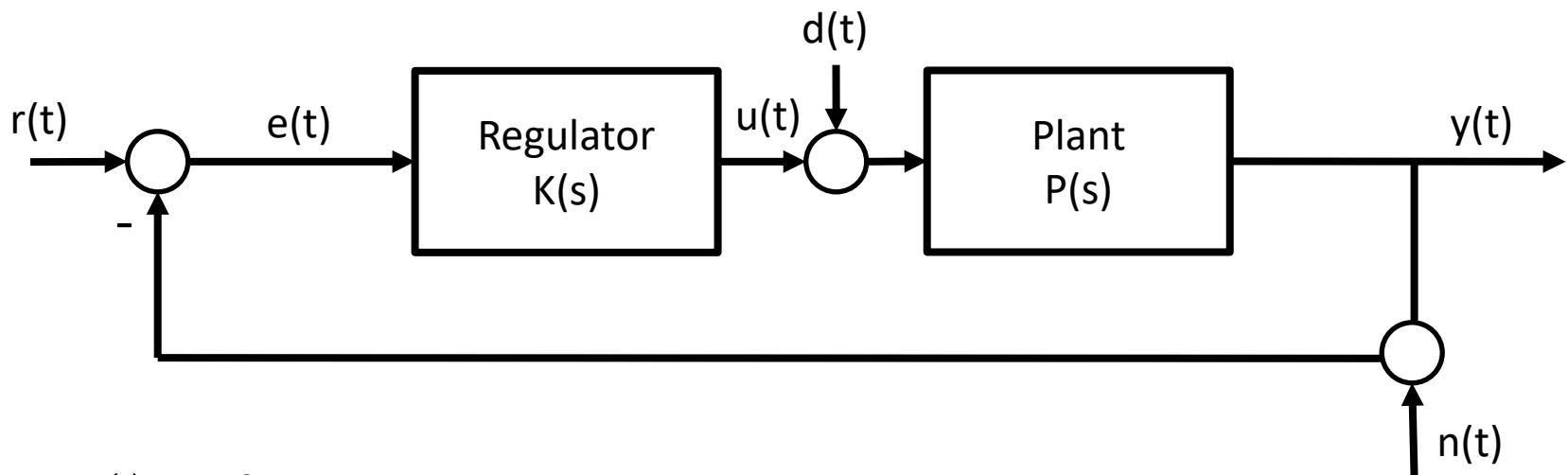


Lecture #0.2

Control systems requirements

- Steady-state requirements
 - asymptotic stability
 - steady-state error
- Transient requirements
 - step response
- Application to PID control

Reference scheme



- $r(t)$ – reference signal
- $e(t)$ – control error
- $u(t)$ – control action
- $y(t)$ – controlled output
- $n(t)$ – measurement noise
- $d(t)$ – additive (control action) disturbance

Control systems specifications

- When designing a control system, some **design requirements** must be met
- Typically
 - Steady-state error
 - Transient performance
 - Noise and **disturbance** rejection
 - Robustness

Control systems specifications

- For simplicity, we will consider **SISO plants**
- Linearity allows to easily deal with **additive noise and disturbance** signals
- All the requirements must be met also in presence of **uncertainties**

Asymptotic stability

- First basic requirement:
→ closed-loop **asymptotic stability**
 - Hurwitz criterion
 - Nyquist criterion
- Sometimes other stability properties are considered
(e.g. **Bounded-Input-Bounded-Output**)

Response to standard signals

- Further requirements on **static** and **dynamic** performance are usually given with reference to the response to **standard signals and disturbs**
- Often **polynomial** signals are considered (step, ramp, parabola...)

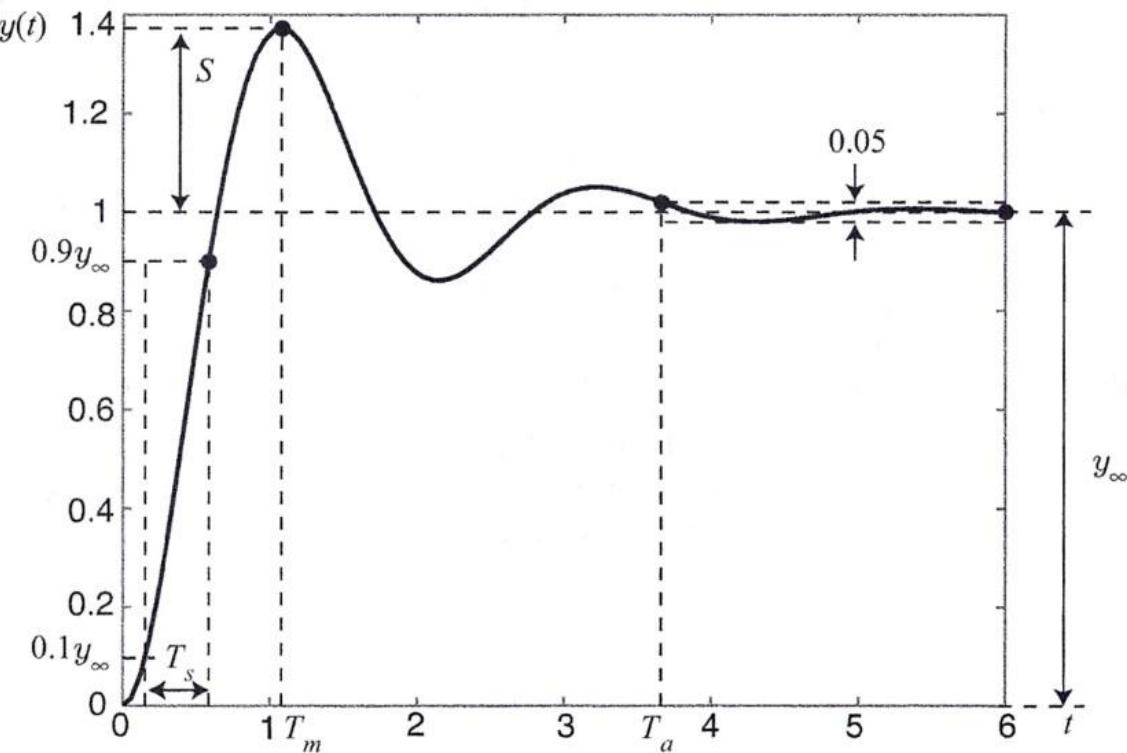
Response to standard signals

- The response can be divided into
 - Transient \leftrightarrow **dinamic specifications**
 - Steady-state \leftrightarrow **static specifications**
- Often given in terms of the system's **step response**

Step response

- With respect to the step response, we can define:

- Steady-state value
- Rising time
- Settling time
- Maximum overshoot
- Time of maximum overshoot



Step response

- **Steady-state value**: value of the output after the end of the transient (y_∞)
- **Rising time**: time needed to go from 10% to 90% of y_∞ (T_s)
- **Settling time**: time interval after which the output remains in a given range around y_∞ , usually $\pm 5\%$ or $\pm 1\%$ ($T_{a,\varepsilon\%}$)
- **Maximum overshoot**: maximum distance of the output from y_∞

$$S = \max \left(\frac{y - y_\infty}{y_\infty} \right)$$

- **Time of maximum overshoot**: time instant when the maximum overshoot is reached (T_m)

Control requirements

- Typically require that the **error at steady-state** is smaller than a given maximum value

$$e_{\infty} = \lim_{t \rightarrow \infty} |r(t) - y(t)| \leq e_{max}$$

- **Transient** requirements usually assign an upper limit to T_a, T_s, S

Control *action* requirements

- In addition, **physical limitation on the control action** must also be considered:
 - maximum admissible **value** of the control
 - energetic considerations: energy consumption, components overheating, etc.

Harmonic response function

- In practice, we often want to study properties of the closed-loop transfer function

$$F(s) = \frac{P(s)K(s)}{1 + P(s)K(s)}$$

- by looking at properties of the **loop function**

$$L(s) = P(s)K(s)$$

Nyquist criterion

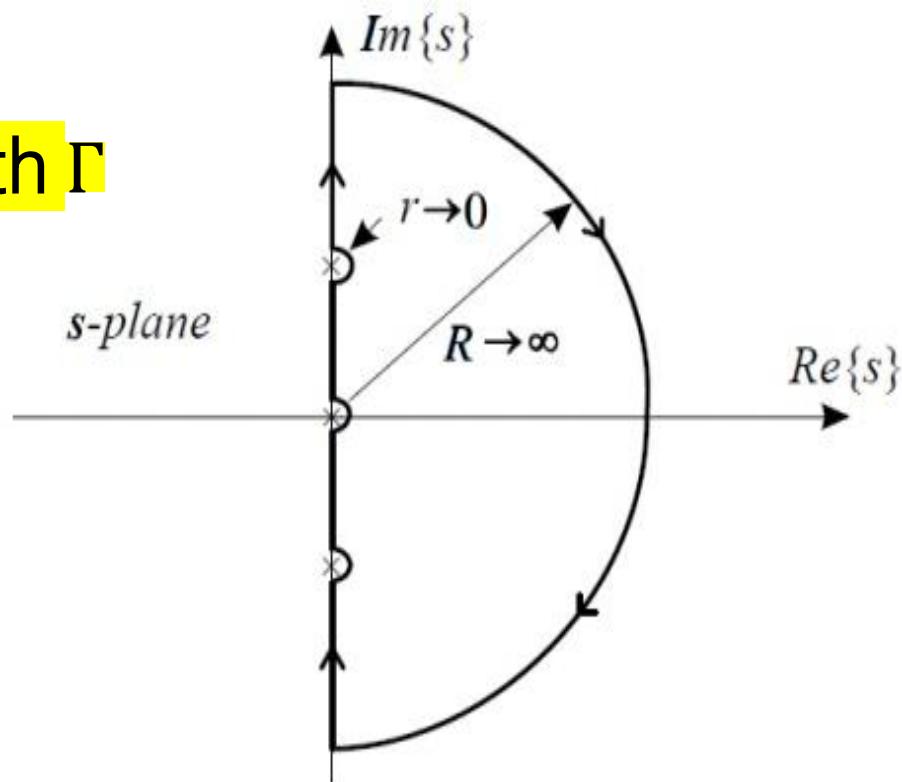
- We want to check the number of RHP zeros of $den(s) = 1 + L(s)$

- Consider the **Nyquist path Γ**

→ all frequencies

+

the point at infinity
(encircling the RHP)



Nyquist criterion

- From Cauchy's argument principle

number of time
 Γ encircles the origin

logarithmic derivative
extracts the argument of $e^{i\theta}$

zeros of $D(s)$
enclosed by Γ

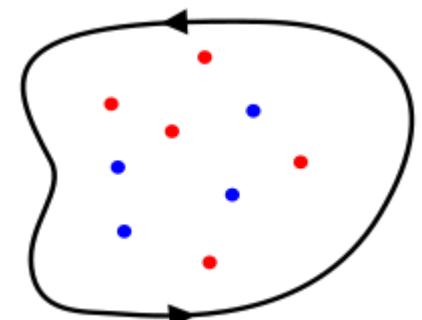
$$N = -\frac{1}{2\pi i} \int_{\Gamma} \frac{den'(s)}{den(s)} ds = (Z - P)$$

Annotations:

- Red arrow pointing to the integral: **CW = positive**
- Red arrow pointing to the integral: **CCW = negative**
- Red arrow pointing to the integral: **a full encirclement**
- Red arrow pointing to the term $Z - P$: **poles of $D(s)$ enclosed by Γ**

- zeros of $den(s) =$ closed-loop poles

$$\rightarrow Z = 0 \Leftrightarrow N + P = 0$$



Nyquist criterion

- To have $\# \text{ CL RHP poles} = 0$

$$\# \text{ CCW windings of } 1 + L(\Gamma) \text{ around the origin} = \# \text{ OL RHP poles}$$

- typically we look at the Nyquist diagram of $L(\Gamma)$
→ look at the encirclements around -1

Stability margins

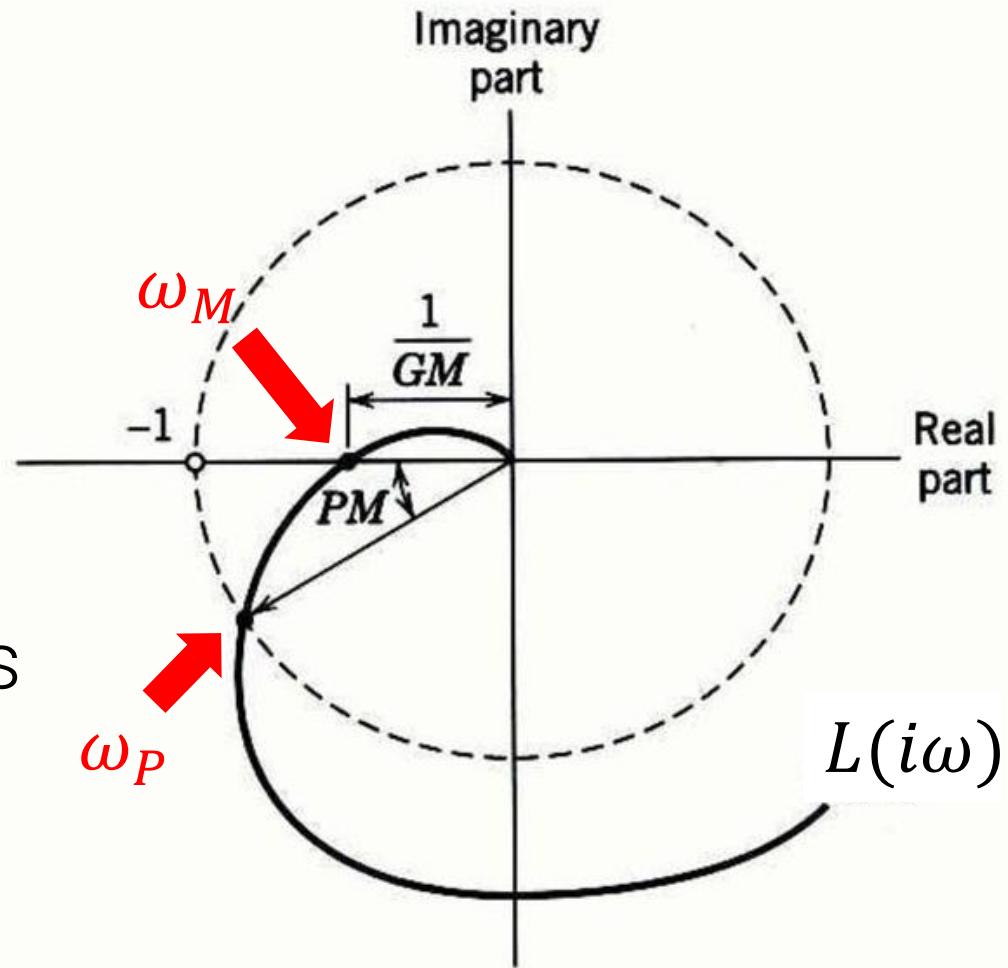
- If the system is stable, we want to *stay away* from the critical point

$$-1 + i0 = e^{i\pi}$$

- avoid magnitude 1 at phase $-\pi$
- avoid phase $-\pi$ at magnitude 1

Stability margins

- **Gain margin:** **amplification** that brings $|L(i\omega_M)|$ to 1 for $\angle L(i\omega_M) = -\pi$
- **Phase margin:** **phase lag** that brings $\angle L(i\omega_P)$ to $-\pi$ for $|L(i\omega_P)| = 1$



More requirements!

- For a good control system, we want
 - $Y(s) \approx R(s)$
 - $U(s)$ small
- But we also want to **reject** external signals
 - $R(s) \rightarrow Y(s), U(s)$
 - $D(s) \rightarrow Y(s), U(s)$
 - $N(s) \rightarrow Y(s), U(s)$

Loop shaping

- In practice, for LTI SISO systems, all these requirements can be translated in terms of **constraints on the (open-loop) harmonic response function** of the series controller-plant

→ **loop shaping**

Loop shaping

- Moreover (without going into details...):
 - settling time, disturbance and noise rejection are linked to the system's **bandwidth**
 - overshoot is linked to **phase margin**
 - steady-state error is linked to **dc-gain**

$$R(s) \rightarrow Y(s)$$

- $Y(s) = P(s)K(s)E(s) = P(s)K(s)(R(s) - Y(s))$
(we neglect n and d here, remember superposition principle...)

$$\Rightarrow Y(s) = \underbrace{\frac{P(s)K(s)}{1 + P(s)K(s)}}_{F(s)} R(s)$$

$F(s)$
Complementary sensitivity:
we want $F(s) \approx 1$

$$D(s), N(s) \rightarrow Y(s)$$

- $Y(s) = -P(s)K(s)(Y(s) + N(s))$

$$\Rightarrow Y(s) = -F(s)N(s)$$

We want $F(s) \approx 0$

- $Y(s) = -P(s)K(s)Y(s) + P(s)D(s)$

$$\Rightarrow Y(s) = \underbrace{\frac{P(s)}{1 + P(s)K(s)}}_{\text{Process sensitivity}} D(s)$$

we want $L(s) \rightarrow \infty$

Loop shaping

