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Overview

+ Steady-state requirements
- asymptotic stability
- steady-state error

 Transient requirements
- step response

- Application to PID control
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Reference scheme

d(t)

r(t) e(t) | Regulator u(t)é Plant y(t) R
K(s) P(s)

n(t)
- r(t) — reference signal
- (t) — control error
- u(t) — control action
- y(t) — controlled output
- n(t) — measurement noise
- d(t)— additive (control action) disturbance
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Control systems specifications

« \When designing a control system, some
design requirements must be met

« Typically
— Steady-state error
— Transient performance
— Noise and disturbance rejection
— Robustness
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Control systems specifications

« For simplicity, we will consider SISO plants

* Linearity allows to easily deal with additive
noise and disturbance signals

o All the requirements must be met also in
presence of uncertainties
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Asymptotic stability

* First basic requirement:
- closed-loop asymptotic stability

— Hurwitz criterion
— Nyquist criterion

« Sometimes other stability properties are
considered
(e.g. Bounded-Input-Bounded-Output)
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Response to standard signals

 Further requirements on static and

dynamic performance are usually given
with reference to the response to standard

signals and disturbs

 Often polynomial signals are considered
(step, ramp, parabola...)
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Response to standard signals

* The response can be divided into
— Transient <> dinamic specifications
— Steady-state <> static specifications

« Often given in terms of the system’s step
response
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Step response

« With respect to the step response, we can define:
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Step response

— Steady-state value: value of the output after the end of the
transient (V)

— Rising time: time needed to go from 10% to 90% of y, (Ts)

— Settling time: time interval after which the output remains in a
given range around ¥, usually +5% or 1% (T o)

— Maximum overshoot: maximum distance of the output from y,,

S = max (y _ yoo)
Yoo

— Time of maximum overshoot: time instant when the maximum
overshoot is reached (T,)
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Control requirements

« Typically require that the error at steady-state
Is smaller than a given maximum value

o = lim|r(t) — y(t)| < emax

t— oo

 Transient requirements usually assign an
upper limitto T,, T, S

=PrL

Control and Operation of Tokamaks



Control action requirements

* |n addition, physical limitation on the
control action must also be considered:

— maximum admissible value of the control

— energetic considerations: energy consumption,
components overheating, etc.
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Harmonic response function

* |n practice, we often want to study properties
of the closed-loop transfer function

P(s)K(s)
14+ P(s)K(s)

F(s) =

by looking at properties of the loop function
L(s) = P(s)K(s)
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Nyquist criterion

 We want to check the number of RHP zeros of
den(s) =1+ L(s)

A Im{s}
« Consider the Nyquist path T’ -
»

5

- all frequencies Tpans R Rels)
+ 2 -

the point at infinity L
(encircling the RHP)
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Nyquist criterion

» From Cauchy’'s argument principle

logarithmic derivative

number of time extracts the argument of e'? zeros of D(s)
I' encircles the origin ‘ enclosed by I'
|} 1 [ den’ Y |
en \S
= : ds = (Z — P)
7 2miJ; den(s) ?

CW = positive ‘ poles of D(s)
CCW = negative 3 full encirclement enclosed by I

« zeros of den(s) = closed-loop poles

>Z=0N+P=0
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Nyquist criterion

« To have # CLRHP poles=0

# CCW Windings of — # OL RHP poles
1 + L(I') around the origin

« typically we look at the Nyquist diagram of L(T")
- look at the encirclements around -1
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Stability margins

* |f the system is stable, we want to
stay away from the critical point
—14i0 =e'"

— avoid magnitude 1 at phase —n
— avoid phase —m at magnitude 1
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Stability margins

- Gain margin: Imaginary
amplification that
brings |L(iwy)] to 1
for AL(la)M) = —1T

 Phase margin:
phase lag that brings 4
AL(iwp) tO —m Wp
for |L(wp)| =1
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More requirements!

* For a good control system, we want
—Y(s) = R(s)
— U(s) small

« But we also want to reject external signals
—R(s) > Y(s),U(s)
—D(s) » Y(s),U(s)
—N(s) » Y(s),U(s)
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Loop shaping

* |In practice, for LTI SISO systems, all these
requirements can be translated in terms of
constraints on the (open-loop) harmonic
response function of the series controller-
plant

- loop shaping
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Loop shaping

« Moreover (without going into details...):

— settling time, disturbance and noise rejection are linked
to the system’s bandwidth

— overshoot is linked to phase margin

— steady-state error is linked to dec-gain
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R(s) = Y(s)

e Y(s) =P(s)K(s)E(s) = P(S)K(S)(R(S) Y(S))

(we neglect n and d here, remember superposition principle...)

P(s)K(s)
= Y(s) = T PRI )R(S)
F(s)

Complementary sensitivity:
we want F(s) = 1
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D(s),N(s) = Y(s)

¢ Y(s) = —P(S)K(S)(Y(S) + N(s))

= Y(s) = —-F(s)N(s)

We want F(s) = 0

* Y(s) = —P(s)K(s)Y(s) + P(s)D(s)

B P(s)
= Y(s) —\1 - P(S)K(S)jD (s)

Process sensitivity
we want L(s) » oo
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Loop shaping

steady-state error

Gm =6.02 dB (at 1 rad/s), Pm = 21.4 deg (at 0.682 rad/s)

stability margins
Bode Diagram
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